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Abstract. We present the potential mapping method which is a model of steady-state flow velocity and magnetic field in the

empirical magnetosheath domain. The method makes use of a coordinate transformation from the empirical magnetosheath do-

main into the parabolic magnetosheath domain, and evaluate a set of the shell variable and the connector variable to utilize the

solution of Laplace equation obtained for the parabolic magnetosheath domain. Our model uses two invariants of transforma-

tion: the zenith angle in the magnetosheath and the ratio of the distance to the magnetopause to the thickness of magnetosheath5

along the magnetopause-normal direction. The plasma flow and magnetic field can be determined as a function of the upstream

condition (flow velocity or magnetic field) in a wider range of zenith angle. The potential mapping method is computationally

inexpensive by using the analytic expression as much as possible, is applicable to the planetary magnetosheath domains.

1 Modeling the steady-state magnetosheath

Steady-state plasma flow and magnetic field can be regarded as a realization of potential field in the planetary magnetosheath10

region when the vorticity and the electric current are treated as ignored. In such a case, the potential is obtained by solving

the Laplace equation, which was elegantly and analytically solved by Kobel and Flückiger (1994) in a parabolic shape of

magnetosheath (hereafter KF). The KF potential was further extended to the stream function in the magnetosheath by Guicking

et al. (2012).

The KF solution made a series of breakthroughs in the magnetosheath research. One of the most successful applications is15

the ability to track the plasma parcel along the streamline in the modeled magnetosheath. The tracking method was extensively

used to observationally study the mirror mode growth (e.g., Tatrallyay et al., 2002; Génot et al., 2011) and the streamwise

turbulence evolution in the magnetosheath (Guicking et al., 2012). Predictive models of plasma flow and magnetic field serve

as a useful tool when combined with the numerical simulation or the observational data.

The KF potential is obtained on the assumption that the planetary bow shock and magnetopause have a parabolic shape20

sharing the same focal point. Empirical models of the bow shock and magnetopause (fitted to the spacecraft data), on the other

hand, are not necessarily parabolically or co-focally shaped. For example, the empirical Earth bow shock model by Farris et al.

(1991) and Cairns et al. (1995) has a parabolic shape but the focal point differs from that of the KF solution; the empirical

magnetopause model by Shue et al. (1997) applies a power-law scaling to the parabolic shape such that the magnetic field lines

appear stretched in the tail region. The gap between the KF parabolic magnetosheath and the empirical magnetosheath needs25

to be filled when applying the KF potential in the empirical magnetosheath.
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Figure 1. Velocity potential (left panel) and stream function (right panel) in the empirical magnetosheath domain obtained by mapping onto

the shell variable v and the connector variable u.

Naively speaking, one wishes to find a conformal mapping from the KF parabolic magnetosheath onto an arbitrary shape

of empirical magnetosheath such as the analytic extension of magnetopause shape (Narita et al., 2023). However, it turns

out that no general mathematical algorithm is known so far to obtain the conformal mapping when the spatial domain is not

properly bounded. The problem lies in the fact that the magnetosheath region is bounded only by two sides, i.e., the standing30

shock and the magnetopause in the radial direction to the planet, but not bounded along the flow in the tail region. The

algorithms of numerical conformal mapping are so far proposed for spatially bounded domains (Papamichael and Whiteman,

1973; Chakravarthy and Anderson, 1979; Fornberg, 1980; Karageorghis et al., 1996) or domains with a closed shape of internal

boundaries (Wei et al., 2014).

A non-conformal yet practical mapping to utilize the KF potential is the radial mapping proposed by Soucek and Escoubet35

(2012). While the radial mapping can reasonably (i.e., with a relatively high accuracy) transform the KF potential into the

empirical magnetosheath domain on the dayside, the mapping quality becomes gradually degraded on the tail side due to the

conversion effect of the shell shape. In this paper, we construct a novel mapping method (which we call the potential mapping

method) as an improved version of the radial mapping. Our method can compute both the plasma flow and the magnetic field

in the empirical magnetosheath domain by evaluating the shell variable v and the connector variable u that are used in the40

KF potential and the stream function. The flow velocity is computed either via the velocity potential as demonstrated in Fig. 1

left panel or via the stream function as demonstrated in Fig. 1 right panel; and the magnetic field is computed via the scalar

magnetic potential (Fig. 2). We present the method to determine the KF potential and the stream function in the empirical

magnetosheath domain.

Our method is advantageous in that any harmonic functions (solutions of the Laplace equation) can be mapped to any45

magnetosheath shape. The Kobel-Flückiger potential and the Guicking stream function are examples of the harmonic functions.

The Laplace equation in the magnetosheath can be exactly and analytically integrated in the parabolic coordinate system; yet,

in reality, the empirical magnetosheath is not parabolic. Our work fills the gap between the parabolic magnetosheath model

and the empirical magnetosheath model. We report here that there is a numerical method to find the v and u values reasonably
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Figure 2. Magnetic potential for the upstream magnetic field with an angle of 135 degree to the x axis (45 degree to the upstream flow

direction, (left panel) and sampled magnetic field vectors obtained by the negative gradient of the magnetic potential (right panel).

in an arbitrary magnetosheath shape. We chose a shifted parabolic shape of the bow shock and an empirical shape of the50

magnetopause. But the algorithm is so general that one can apply the method to other shapes of the shock and magnetopause.

Our study is motivated by the radial mapping method introduced by Soucek and Escoubet (2012). While the radial mapping

is nearly boundary-fitted on the dayside, the orthogonality of mapping degrades in the flank to tail region. In our approach,

we implement a magnetopause-fitted mapping by retaining two invariants: one is the zenith angle in the magnetosheath to

the nearest magnetopause position, and the other is the relative distance from the magnetopause to the bow shock along the55

magnetopause-normal direction. By doing so, the flow velocity and the magnetic field can be computed in a wider range of

zenith angles up to the flank and tail region of magnetosheath. Thus, the present study enables us to generalize the existing

models of the flow velocity (e.g., Soucek and Escoubet, 2012; Schmid et al., 2021) and the magnetic field (e.g., Kobel and

Flückiger, 1994) within the magnetosheath for more realistic conditions (i.e., magnetopause and bow shock shapes). This

mapping method also opens the door to a novel tool development to estimate the interplanetary magnetic field directly from60

the magnetic field data in the sheath region (Toepfer et al., 2022).

2 Potential field in the magnetosheath

In the frame of potential theory, the flow velocity is U is obtained from the velocity potential Φ(vel) or from the stream function

Ψ as

U =−∇Φ(vel) =−∇× (Ψeϕ) . (1)65

The symbol eϕ is the unit vector in the azimuthal directions around the symmetry axis (Sun-to-planet direction). Kobel and

Flückiger (1994) and Guicking et al. (2012) obtained the analytic expression of the velocity potential Φ(vel) using the shell

variable v (iso-contour lines enveloping the magnetosphere) and the connector variable u (iso-contour lines connecting from
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the bow shock to the magnetopause).

Φ(vel) = −Ux
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v2
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mp
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)
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where Ux is the upstream flow velocity, vmp the shell variable at the magnetopause, vbs the shell variable at the bow shock, v

the shell variable, u the connector variable, and Φ(vel)
0 a free parameter (integration constant) which is set to zero without loss

of generality. The shell variables vmp and vbs contain the information on the stand-off distances (Rmp and Rbs) in the subsolar

region, and are defined by Kobel and Flückiger (1994) as75

vmp =
√

Rmp (3)

vbs =
√

2Rbs−Rmp. (4)

Guicking et al. (2012) transformed the KF potential and obtained analytically the stream function Ψ as a function of the

shell variable and the connector variable:

Ψ = −1
2
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(
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)
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v

(
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v2
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− 1
)
− 1

2
Uxuv. (5)80

Hereafter, one may set Ux =−1 so that the velocity potential Φ(vel) is normalized to the upstream velocity.

The magnetic field in the magnetosheath is derived from the potential in the same fashion as the flow velocity, that is,

B =−∇Φ(mag). (6)

The magnetic potential is a function of the shell variable v and the connector variable u (Kobel and Flückiger, 1994):

Φ(mag) = − v2
mpv2

bs

v2
bs− v2

mp

×85

[(
B(up)
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z sinϕ

)
u

(
1
v

+
v

v2
bs

)
+

B(up)
x

(
u2− v2

2v2
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+ lnv

)]

−B(up)
x (−x)−B(up)

y y−B(up)
z z + Φ(mag)

0 , (7)

where B
(up)
x is the sunward component of the upstream magnetic field (corresponding to the GSE-X in near-Earth space), and

B
(up)
y and B

(up)
z are two components of the upstream magnetic field perpendicular to the x direction. ϕ is the azimuthal angle90

of the position around the symmetry axis (the y direction is given by the angle ϕ = 0). The integration constant is chosen as

Φ(mag)
0 = 0. The magnetic potential cannot be further transformed into the form of stream function since the magnetic field

distribution is essentially three-dimensional in the magnetosheath.
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The shell variable v and the connector u play an important role in computing the flow velocity and magnetic field in the

magnetosheath. These variables are explicitly evaluated in the style of parabolic coordinates as95

v =
√

r0 + (xk−x0) (8)

u =
√

r0− (xk−x0), (9)

where r0 is the distance to the focus at x0:

r0 =
√

(xk−x0)2 + y2
k + z2

k (10)

and the focus is along the x axis, and is defined as100

x0 =
1
2
Rmp. (11)

xk, yk, and zk are the Cartesian representation of the KF magnetosheath model (i.e., with the pre-fixed bow shock and magne-

topause shapes) obtained by projecting the position vector onto the unit vectors ex, ey , and ez:

xk = r(k) · ex (12)

yk = r(k) · ey (13)105

zk = r(k) · ez. (14)

To complete the variable set for computing the potentials and the stream function, the azimuthal angle ϕ is introduced as

ϕ = atan(zk/yk). (15)

Our task is to find the shell variable v and the connector variable u in the empirical magnetosheath by finding a suitable

mapping of the position vector from the empirical magnetosheath (denoted by r) onto the KF parabolic system (denoted by110

r(k)). The evaluated v and u are then readily used to obtain the scalar potentials and the stream function. The flow velocity and

the magnetic field in the empirical magnetosheath are obtained by computing the gradient of the respective potential. Figure

3 visualizes the iso-contours of the shell variable v and the connector variable u in the KF parabolic system (left panel) and

the empirical magnetosheath (right panel). The shell variable v is characterized by the lines with the curvature center on the

right side in the panel, and contains the parabolic bow shock (at v = vbs) and magnetopause (at v = vmp) marked by thick115

lines. The connector variable u has the curvature center on the left side in the panel, and the iso-contour lines are orthogonal

to the bow shock and magnetopause. Our mapping procedure evaluates the scalar potential in the empirical magnetosheath by

transforming the coordinates from the empirical magnetosheath into the KF magnetosheath model as (x,y,z)→ (xk,yk,zk),

and evaluating the key variables v (the shell variable) and u (the connector variable) in the KF magmetosheath model as

(xk,yk,zk)→ (u,v,ϕ).120
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Figure 3. Iso-contour lines with u = const. (center of curvature on the left side) and that with v = const. (center of curvature on the right

side) in the KF magnetosheath model (left panel) and the empirical magnetosheath model (right panel). The bow shock stand-off distance is

12.8 Earth radii and the magnetopause stand-off distance is 9.8 Earth radii.

3 Mapping procedure

3.1 Overview of the mapping

The mapping is performed, conceptually speaking, in two transformations to utilize the KF potential and the Guicking stream

function (originally developed for the parabolic magnetosheath domain) for the empirical magnetosheath (which is not parabolic).

In the first transformation, the position vector is mapped from the empirical magnetosheath r onto the KF system rk. This125

is achieved on the assumption that the distance from the position in the magnetosheath to the magnetopause along the

magnetopause-normal direction is the same when normalized to the magnetosheath thickness (the distance from the bow

shock to the magnetopause along the magnetopause-normal direction) and also that the azimuthal angle ϕ is the same between

the empirical magnetosheath and the KF system. The first transformation is divided into computing the planet-to-bow shock

distance (step 1), the planet-to-magnetopause distance (step 2), magnetosheath-to-magnetopause distance (step 3), the thick-130

ness of the empirical magnetosheath (step 4), the thickness of the KF magnetosheath (step 5), and the mapping of the position

vector (step 6). In the second transformation, the mapped position vector is used to compute the shell variable v and the con-

nector variable u (step 7) and to obtain the potentials and the stream function in the empirical magnetosheath using Eqs. (2),

(5), and (7) (step 8). Here again, the azimuthal angle ϕ is treated as invariant. Figure 4 illustrates the mapping procedure and

graphically explains the variables that need to be determined to perform the mapping such as the zenith angle of the nearest135

magnetopause θmp, the radial distance to the bow shock and magnetopause along the magnetosheath-normal direction (rbs

and rmp, respectively), the distance from the magnetosheath to the magnetopause αemp, the magnetopause thickness α
(bs)
emp.

The position vector r and the bow shock and magnetopause stand-off distances (Rbs and Rmp) are the input parameters in the

model.
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Figure 4. Graphical representation of the variables computed in the step 1 to 4 of the potential mapping method: the zenith angle of the

nearest magnetopause θmp, the radial distance to the bow shock and magnetopause along the magnetosheath-normal direction (rbs and rmp,

respectively), the distance from the magnetosheath to the magnetopause αemp, the magnetopause thickness α
(bs)
emp. The position vector r and

the bow shock and magnetopause stand-off distances (Rbs and Rmp) are the input parameters in the model.

3.2 Step 1: Computing the planet-to-bow shock distance140

We begin with a position vector in the empirical magnetosheath domain, and express the position vector as r = xex+yey+zez .

Hereafter, we present the mapping procedure in the two-dimensional plane spanning the x and y directions for simplicity, but the

computation in three dimensions is straightforward by representing the y component of position vector in the cylindrical fashion

as ρcosϕ and the z component into ρsinϕ using the distance ρ to the x axis. The boundaries (bow shock and magnetopause)

are specified by the users and do not need to be parabolic. In this paper, we choose the empirical parabolic bow shock for the145

outer boundary and the empirical magnetopause as the inner boundary. The empirical bow shock position is expressed in GSE

coordinates (the x-axis pointing to the Sun) as (Farris et al., 1991; Cairns et al., 1995)

x = Rbs− bemp y2, (16)

where Rbs is the bow shock stand-off distance and bemp is the empirical flaring parameter.

We express the empirical bow shock in the polar representation using a quadratic equation. The focus is located at the planet.150

By introducing the zenith angle θ and inserting x = rbs cosθ and y = rbs sinθ in Eq. 16), we obtain the equation for the radial

distance to the empirical bow shock:

bemp r2
bs sin

2 θ + rbs cosθ−Rbs = 0. (17)
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Equation (17) can be algebraically solved, and we take the positive value of the solution as

rbs =
1

2bemp sin2 θ

(
−cosθ +155

√
1− (1− 4bemp Rbs)sin2 θ

)
. (18)

3.3 Step 2: Computing the planet-to-magnetopause distance

The realistic magnetopause shape significantly differs from the KF system in (1) having the focal point at the planet and (2)

exhibiting an asymptotic behavior to a cylindrical shape in the tail region. These features are elegantly incorporated into the

empirical magnetopause model by Shue et al. (1997):160

x2 + y2− 4R4
mp

4R2
mp− y2

= 0, (19)

in the Cartesian representation and

rmp = Rmp

√
2

1 + cosθ
. (20)

in the polar representation. The radial distance to the magnetopause is given conveniently by Eq. (20). The Shue model repro-

duces the magnetopause stand-off distance Rmp in the subsolar direction (θ = 0), the cylindrical distance asymptotes to 2Rmp165

in the tail.

3.4 Step 3: Computing the magnetosheath-to-magnetopause distance

We wish to express the position vector along the empirical magnetopause-normal direction such as

r = rmp + αemp emp, (21)

where rmp is the magnetopause position nearest to the position vector, and emp is the unit vector in the magnetopause-normal170

direction. The unit vector points away from the planet and satisfies the condition

rmp · emp > 0 (22)

The symbol αemp is the distance to the magnetopause along the magnetopause-normal direction emp in the empirical magne-

tosheath.

The nearest magnetopause position is obtained by searching for the zenith angle θmp for the minimum distance from the175

sample position to the magnetopause. The distance D is defined as

D =
√

(rx− rmp cosθmp)2 + (ry − rmp sinθmp)2. (23)
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The search for the minimum distance is implemented in a brute-force fashion as a function of µmp = cosθmp in our study. It is

worth noting that the variation of D2 with respect to µmp has an analytic expression as

δ(D2)
δµmp

=
1

2Rmp
− 2

Rmp

1√
(1 +µmp)/2

×180

[
1
4
(rxµmp− ry

√
1−µ2

mp) +

1 +µmp

2

(
rx +

ryµmp

1−µ2
mp

)]
(24)

and one may alternatively search for µmp satisfying the condition:

δ(D2)
δµmp

= 0. (25)

Having the nearest magnetopause at a distance of rmp and a zenith angle of θmp, we are ready to compute the magnetopause-185

normal direction and the distance αemp. To obtain the magnetopause-normal direction, we define the magnetopause shape

function fmp as

fmp = x2 + y2− 4R4
mp

4R2
mp− y2

, (26)

and compute the normal direction by the gradient of fmp as

∂fmp

∂x
= 2x (27)190

∂fmp

∂y
= 2y

[
1− 4R4

mp

(4R2
mp− y2)2

]
. (28)

The magnetopause-normal direction is obtained by normalizing the gradient vector (∂xfmp,∂yfmp) and representing with the

basis vectors (ex and ey) as

emp =
sgn√

(∂xfmp)2 + (∂yfmp)2
×

(∂xfmp ex + ∂yfmp ey) (29)195

evaluated at the magnetopause (x = rmp cosθmp and y = rmp sinθmp). The magnetopause-normal vector emp has a unit length,

and the sign (sgn =±1) is chosen such that the normal vector is pointing outward (Eq. 22). The distance αemp to the magne-

topause along the normal direction is obtained from Eq. (21) as

αemp =
(x− rmp cosθmp) + (y− rmp sinθmp)

emp · ex + emp · ey
(30)

Equation (30) is constructed to be robust against the singular behavior on the dayside (emp·ey = 0) and in distant tail (emp·ex =200

0).
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3.5 Step 4: Computing the thickness of empirical magnetosheath

For our mapping purpose, the distance αemp is normalized to the magnetosheath thickness α
(bs)
emp such that relative distance

αemp/α
(bs)
emp serves as an invariant of the mapping from the empirical magnetosheath onto the KF magnetosheath. To achieve

this, we combine Eq. (16) with Eq. (21), and analytically determine the thickness from the bow shock to the magnetopause in205

the empirical magnetosheath. That is, the thickness α
(bs)
emp is obtained by rewriting the bow shock quadratic equation (Eq. 16)

for the position vector using the variable α
(bs)
emp (Eq. 21) extended to the bow shock location. The equation is again quadratic,

and the solution is algebraically obtained as:

α(bs)
emp =

1
2bemp e2

mp,y

×
[
−(emp,x + 2bemp ympemp,y)2 + dα

]
, (31)210

where dα is an auxiliary variable defined as

dα = [(emp,x + 2bemp ymp emp,y)2−

4bemp e2
mp,y ×

(xmp + bemp y2
mp−Rbs)]1/2. (32)

In the subsolar direction (ymp = 0), the thickness is simplified to215

α(bs)
emp = Rbs−Rmp. (33)

3.6 Step 5: Computing the magnetosheath thickness in the KF system

Now we repeat the procedures from the step 1 to 5 for the KF system to determine the magnetosheath thickness in the KF

system α(k). We treat the zenith angle θmp and the relative distance αemp/α
(bs)
emp as invariants of the mapping between the

empirical magnetosheath and the KF system. The KF bow shock location is given as220

x = Rbs− bky
2, (34)

where the KF bow-shock flaring parameter bk is pre-fixed as (Kobel and Flückiger, 1994)

bk =
1

4Rbs− 2Rmp
. (35)

The radial distance from the planet to the KF bow shock is

r
(k)
bs =

1
2bk sin2 θ

×225

(
−cosθ +

√
1 + (4bkRbs− 1)sin2 θ

)
. (36)

The KF magnetopause is defined in Kobel and Flückiger (1994) as

x = Rmp−
1

2Rmp
y2. (37)
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From Eq. (37) the radial distance from the planet to the KF magnetopause is computed as

r(k)
mp =

Rmp

sin2 θ

(
−cosθ +

√
1 + sin2 θ

)
. (38)230

To obtain the magnetopause-normal direction in the KF system, we compute the gradient of the magnetopause shape function:

f (k)
mp = 2−Rmp +

1
2Rmp

y2. (39)

The gradient is analytically given as

∂f
(k)
mp

∂x
= 1 (40)

∂f
(k)
mp

∂y
=

y

Rmp
(41)235

The magnetopause-normal direction e
(k)
mp is then obtained by applying Eqs. (40) and (41) to Eq. (29), which reads as

e(k)
mp =

sgn√
(∂xf

(k)
mp)2 + (∂yf

(k)
mp)2

×

(
∂xf (k)

mp) ex + ∂yf (k)
mp) ey

)
(42)

The thickness in the KF system α
(bs)
k is determined by combining the bow shock shape (Eq. 34) with the position vector at

the bow shock:240

r
(k)
bs = r(k)

mp + α
(bs)
k e(k)

mp. (43)

Equation (34) becomes again a quadratic equation with respect to the thickness α
(bs)
k , and the solution reads:

α
(bs)
k =

1
2bk e2

mp,y

×

[−(emp,x + 2bk ymp emp,y) + d(k)
α ] (44)

where the auxiliary variable d
(k)
α is defined as245

d(k)
α = [(emp,x + 2bk ymp emp,y)2−

−4bk e2
mp,y(xmp + bky

2
mp−Rbs)]1/2. (45)

3.7 Step 6: Mapping the position vector onto the KF system

The mapping of the position vector from the empirical magnetosheath onto the KF system is performed by assuming the rela-

tive distance (magnetosheath-to-magnetopause distance normalized to the magnetosheath thickness along the magnetopause-250

normal direction) is the same between the two systems. The distance from the magnetosheath position vector to the mag-

netopause along the magnetopause-normal direction in the KF system αk is then determined by the relative distance in the

empirical magnetosheath αemp, the thickness of the empirical magnetosheath αbs
emp, and magnetosheath thickness in the KF

system α
(bs)
k as

αk = αemp α
(bs)
k /α(bs)

emp. (46)255
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The mapped position vector is then computed as

r(k) = r(k)
mp + αk e(k)

mp, (47)

using the nearest magnetopause position r
(k)
mp (Eq. 38), the magnetosheath-to-magnetopause distance αk (Eq. 46), and the

magnetopause-normal direction e
(k)
mp (Eq. 42).

3.8 Step 7: Computing the shell and connector variables260

The shell variable v and the connector variable u are computed from the mapped position vector r(k) using Eqs. (8) and

(9). respectively. The variables v and u are the same as the parabolic coordinates used in the KF potential with a focus at

x0 = Rmp/2. In our algorithm, the focus is explicitly given in Eqs. (8), (9), and (10). The azimuthal angle around the symmetry

axis ϕ is treated in the same way as in the KF paper. Figure 3 compares the iso-contours of the shell v and the connector u

represented in the KF system (left panel) and the empirical magnetosheath (right panel) for a bow shock stand-off distance of265

12.8 RE (Génot et al., 2011), a bow shock flaring of 0.0223 R−1
E , (Farris et al., 1991; Cairns et al., 1995), and a magnetopause

stand-off distance 9.8 RE (Génot et al., 2011). The shell variable v is characterized by the lines with the curvature center on the

right side in the panel, and contains the parabolic bow shock (at v = vbs) and magnetopause (at v = vmp) marked by thick lines.

The connector variable u has the curvature center on the left side in the panel, and the iso-contour lines are orthogonal to the

bow shock and magnetopause. The mesh pattern in the KF parabolic system (Fig. 3) is symmetric with respect to exchanging270

between v and u at the focal point X = Rmp/2, while the mesh in the empirical magnetosheath is asymmetric between v and

u.

3.9 Step 8: Computing the potentials and stream function

The scalar potentials (velocity potential and magnetic potential) and the stream function are obtained from the shell v and the

connector u using Eqs. (2), (5), and (7). The velocity potential (normalized to the upstream flow) is displayed in Fig. 1 left275

panel, and the stream function in right panel. The iso-contours of the velocity potential represent the lines of the same flow

velocity. The iso-contours of the stream function represent the streamline in the magnetosheath. The flow is deflected around

the nose of magnetopause (the subsolar point) and the streamlines are tangential to the magnetopause.

The magnetic potential and the derived magnetic field are displayed in Fig. 2. The magnetic potential and the magnetic field

(the gradient of the potential multiplied by the minus sign) depend on the upstream field. Fig. 2 shows an example with an280

upstream field angle of 135 degree to the x axis (i.e., 45 degree to the upstream flow direction). The magnetic field is computed

using the central difference scheme. Near the boundaries (bow shock or magnetopause), the mesh resolution is enhanced so

that the mesh points do not cross the boundary when computing with the central difference scheme. The upstream field is

deflected on the positive y side (right panel, lower half plane), and is draping the magnetopause on the negative y side (right

panel, upper half plane).285
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4 Concluding remark

Our potential mapping method may be regarded as an updated version of the radial mapping method (Soucek and Escoubet,

2012) by retaining the orthogonality near the magnetopause in the flank to tail region and also by computing the field through

the potential mapping. Velocity potential, stream function, and magnetic potential are evaluated in the empirical magnetosheath.

The advantages of our methods are as follows.290

1. The method makes extensive use of the exact solution of the Laplace equation (the Kobel-Flückiger potential and the

Guicking stream function). The plasma flow and magnetic field can be determined semi-analytically in a wider range of

zenith angle in the magnetosheath when the solar wind condition and the boundary shapes are given.

2. The method is applicable to an arbitrary shape of magnetosheath domain, opening the door to develop a tool to assist

numerical simulations and spacecraft observations of not only the Earth but also the planetary magnetosheath domain.295

3. The method is computationally inexpensive. In particular, if the shape of bow shock and magnetopause is analytically

given, most of the computational steps in the potential mapping method have an analytic expression.

Naively speaking, as stated in sec. 1, one ideally needs to find a conformal mapping from the KF magnetosheath model

onto the empirical magnetosheath. While the conformal mapping is known both for the empirical bow shock and the empirical

magnetopause, the conformal mapping of the entire magnetosheath domain still remains a challenge. There are two problems300

on this. First, the closing boundary (the u-lines) connecting between the bow shock and the magnetopause is not known,

and moreover, the uniqueness of finding such a boundary is not guaranteed. Second, the gradients along u are not the same

between the empirical bow shock and the empirical magnetopause such that a naive transfinite interpolation ends up with

highly non-orthogonal grids in the magnetosheath.

Our method of computing the plasma flow and magnetic field should be compared against the observations and simulations.305

For example, THEMIS and ARTEMIS spacecraft (Angelopoulos, 2008) and MMS spacecraft (Burch et al., 2016) are providing

a huge amount of data on both sides of the bow shock in the equatorial plane; Cluster spacecraft Escoubet et al. (2001) are

collecting data in polar orbit; ACE spacecraft data Stone et al. (1998) may be used as an upstream monitor; and Earth flyby data

of planetary missions (such as Cassini, BepiColombo) cover the far-distance tail region. In reality, non-axisymmetric structure

arises in the magnetosheath. Our method has the possibility to be extended to three-dimensional, non-axisymmetric modeling310

by the use of magnetopause normal mapping.

Code and data availability. No codes or data are used in this work.
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